Mitigating Hotel Revenue Management System Risk Using Anomaly Detection in Short Booking Windows

Pranoy Bhattacharya, Pratyusha Gajavalli, Surya Sathiyamurthy, Rishabh Sharma, Evan Tiffany, Matthew A. Lanham

Purdue University, Krannert School of Management

bhatta56@purdue.edu; pgajaval@purdue.edu;

sharm451@purdue.edu; ssathiya@purdue.edu;

etiffany@purdue.edu; lanhamm@purdue.edu

ABSTRACT

Investigating anomaly detection for improved pricing decisions for economy hotels within 48 hours. In order to satisfy demand at a price and achieve the greatest revenue, PCA, clustering, and rule-based models are used to detect anomalies in the 48-hour window using historical data and an alert system was built on top of it. These alerts were categorized to high, medium, or low alerts and sent to revenue managers, helping them adjust prices and resources accordingly and mitigate risk.

INTRODUCTION

Economy hotel chains experience high demand variability within 48 hours of each booking date. These demands do not have high visibility, affect the price, and make these hotels less competitive. The addition of anomaly detection help monitor demand in real-time and optimize revenue. Finding the right model to detect the anomaly and alerting the hotel operators to optimize their prices can increase the potential for hotals to maximize their revenue

for noters to maximize their revenue.				
Issues Today		Solution		
6	Low visibility in changing demand.		Monitor the demand in real- time.	
	Affects the price mark-up; reduced revenue optimization.		Build an alert mechanism in real-time anomalies in demand.	
	Noncompetitive pricing increases the likelihood of booking a competitor's		Utilization by Property managers in decisions of price for the property.	

Our study is divided into 4 main steps:

Anomaly Detection - Alert - Price Optimization - Revenue Maximization

property.

RESEARCH OBJECTIVES

- What methodology provides a robust demand forecasting model to form the best baseline?
- How can we best detect demand anomalies?
- What is the optimal margin to utilize in order to neither over detect nor under detect anomalies?

Krannert School of Management

Data from past 3 years - 2019 to 2021

Data

Validation of from hotel chain

MODEL REVIEW

Approaching the development of our model, a variety of algorithms was utilized to test the accuracy with the data provided, selecting the models that provided the best performance to continue. As the data was unlabeled, we focused primarily on unsupervised models. Overall, 12 models were tested on a set of three hotels. The top three model types, PCA, Clustering and Standard Deviation, were further implemented on the set of 11 hotels.

METHODOLOGY

Fig 1. Methodology

del	Principal Component Analysis Standard Deviation		Clustering-based
DS	Preventative measure for sporadic anomalies	Basic, easily interpreted model	Easily visualized and interpretable
ns	Anomalies on the low end were easily missed	Skewed data causes issues with anomaly prediction, overpredicting on the heavy tail	Clusters may include true anomalous points

ANOMALY DETECTION & ALERT SYSTEM

Among the many models used for anomaly detection for booking in the last 48-hour window, there were many underperforming models like isolation forest, clustering models, etc. The best performing models were PCA, Clustering-based detection, and standard deviation. From figure 3, the combined model was able to detect both low and high demand anomalies whereas PCA only (Figure 4) was able to identify only the high demand anomalies. Local anomalies were also discovered in the combined model.

High Alert

Medium Alert

Medium Alert

High Alert

High Alert

High Aler

Medium Alert

Saturday

Wednesday

Saturday

Monday

Friday

Saturday

Wednesday

Fig 4. Snapshot of Email Alert after an anomaly is detected

0 2022-01-15 00:00:00

2021-12-29 00:00:00

2021-07-31 00:00:00

2021-02-15 00:00:00

2021-02-12 00:00:00

2020-05-30 00:00:0

2020-05-13 00:00:00

EXPECTED IMPACT

From our combined model, an accuracy was determined through visual inspection with insight from personnel familiar with the data. The combined model produced a true positive rate around 83% and a false positive rate around 1%.

Assuming optimal pricing can be determined from the demand alert, different rates of revenue increases were predicted for each level of anomaly. From these predictions, we figured the average increase in revenue per year to be from 2.6% to 3.5%. Each day the alert helps aid the manager optimally price the bookings, a

on additional key variables: room type, demand, etc.

ACKNOWLEDGEMENTS

We would like to thank Professor Matthew Lanham and our industry partner for this opportunity, their guidance, and support on this project.

